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n-tree approximation for the largest Lyapunov exponent of a coupled-map lattice
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Then-tree approximation scheme, introduced in the context of random directed polymers, is applied here to
the computation of the maximum Lyapunov exponent in a coupled-map lattice. We discuss both an exact
implementation for small tree depthn and a numerical implementation for largern. We find that the phase
transition predicted by the mean-field approach shifts towards larger values of the coupling parameter when the
depthn is increased. We conjecture that the transition eventually disappears.@S1063-651X~97!04310-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The development of analytical techniques to determ
Lyapunov exponents in extended systems is certainly an
portant issue in view of the relevant information provided
them. One cannot, in general, expect to find exact solutio
as the problem is already non-trivial in the case of lo
dimensional systems. Since most of the results publishe
the literature about Lyapunov exponents follow from n
merical simulations, the development of effective ‘‘perturb
tive’’ techniques is very welcome as they can also prov
information about interactions and correlations that are o
erwise undetectable.

More numerical results are certainly available f
coupled-map lattices~CMLs! since the discreteness of bo
space and time variables allows simpler and faster sim
tions. The most common coupling scheme for a CML is

xi
t115 f ~yi

t!,

yi
t5«xi 21

t 1~122«!xi
t1«xi 11

t . ~1!

The corresponding evolution equation in the tangent spac

j i
t115 f 8~yi

t!@«j i 21
t 1~122«!j i

t1«j i 11
t #, ~2!

from which one can see that even the computation of
maximum Lyapunov exponent~MLE! in a CML requires the
simultaneous consideration of several issues:~i! space-time
correlations of the local multipliersmi

t5 f 8(yi
t), ~ii ! sign fluc-

tuations of the multipliers that induce partial cancellations
the dynamics of the perturbationj i

t , and~iii ! correlations in
tangent space induced by the spatial coupling.

The third issue is definitely the first to be clarified as
arises already in the presence of positived-correlated multi-
pliers. It is precisely this problem that we shall address in
present paper, trying to determine the MLE in the rand
matrix approximation, i.e., assuming that all multipliers a
independent, identically distributed, random processes. T
is the standard assumption made in the study of Ander
localization in disordered systems so that we can say that
investigation can be naturally extended to such a case.
561063-651X/97/56~5!/4998~6!/$10.00
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An initial attempt to determine the effect of spatial co
pling has been made in@1#, where the authors performed
mean-field analysis, exploiting the analogy with the fre
energy computation in directed polymers growing in rand
media. There it was found that the spatial coupling induce
shift in the value of the MLE from the quenched avera
(l5^ lnmi&) in the absence of coupling to the annealed av
age (l5 ln^mi&) above a critical coupling value.

In this paper we apply the so-calledn-tree approximation
scheme@2,3# to obtain more refined analytical estimates
the MLE and to test the convergence properties for incre
ing depth of the tree. The growing evidence that many f
tures of CMLs dynamics are indeed present also in chain
oscillators and in partial differential equations suggests t
techniques developed for CMLs can be extended to s
systems.

The paper is arranged as follows. In Sec. II we recall
essential lines of then-tree approximation in directed
polymer theory and reformulate the approach in the pres
context. Section III is devoted to the numerical implemen
tion, while the small coupling limit is investigated in Sec. IV
Finally, in Sec. V we present some remarks about the pr
lem of estimating the MLE in a coupled map lattice a
recall the open problems.

II. METHOD

In this section we first recall then-tree approximation in
the context of directed polymers, with reference to a~111!-
dimensional structure. The approach is then explicitly form
lated for the determination of the Lyapunov exponent.

Let us consider all directed walks in a square lattice co
posed of the displacementsj→ j1s, where j5( i ,n) repre-
sents a generic site, whilesP$(21,1),(0,1),(11,1)% ~see,
e.g., Fig. 1!, and attribute a random energye( j ) to each site.
The statistical problem amounts to computing the partit
functionZL(0) of all L-step walks departing from the origin

ZL~0!5(
w

exp~2bEw!, ~3!
4998 © 1997 The American Physical Society
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56 4999n-TREE APPROXIMATION FOR THE LARGEST . . .
where the sum runs over all 3L paths,Ew is the sum of the
energies in the sites visited during the walk, andb is the
inverse temperature.

One can write a recursive relation forZL ,

ZL11~0!5exp@2be~0!#(
s

ZL~s!, ~4!

with the initial conditionZ0(0)51. The free energy per uni
length is nothing but the exponential growth rate ofZ with L,
F52 limL→`^ lnZL&/Lb, where ^ & represents the averag
over independent disorder realizations.

The main difficulty preventing an exact solution of th
above problem is the correlation among the partition fu
tions appearing on the right-hand side of Eq.~4!. Then-tree
approximation scheme starts fromn iterations of Eq.~4!
~which automatically accounts for all correlations up ton
steps!,

ZL1n~0!5 (
s1 ,s2 , . . . ,sn

expF2b(
i

e~Si !GZL~Sn!, ~5!

where Si5(m50,i 21sm . By embodying all paths ending in
the same sitej , the above expression can be formally rewr
ten as

ZL1n~0!5(
j

M jZL~ j !, ~6!

where each multiplier

M j[(
wj

expF2b(
i

e~Si !G ~7!

is obtained by summing the Boltzmann weights of all pa
wj starting at the origin and ending inj aftern steps~see Fig.
1!.

It is now convenient to introduce the generating functi

HL~x![^exp$2e2bxZL%&. ~8!

By inserting Eq.~6! in the formal expression ofHL1n , one
obtains

FIG. 1. Schematic diagram of all paths starting from site 0 a
arriving at sitej in three steps.
-

s

HL1n~x!5K)
j

exp$2e2bxM jZL~ j !%L . ~9!

The above equation can be turned into a closed recur
relation if theZL( j ) terms are assumed to be uncorrelat
with each other. This is precisely the core of then-tree ap-
proximation scheme, which yields

HL1n~x!5 )
j 52n

n

HLS x2
1

b
lnM j D . ~10!

The initial conditionH0[^exp$2e2bx%& has a sigmoid shape
interpolating the two fixed pointsP0 (H50) andP1 (H51)
of Eq. ~10!. Since P1 is unstable, whileP0 is stable, the
‘‘front,’’ where H(x) is sensibly different from either 0 an
1, moves to the right. It can be easily seen that the fr
velocity is nothing but the free energy of the polymer@2#.

The velocity can be determined by approximating t
forefront asHL(x);12exp(2gx). Substitution of this an-
satz into Eq.~10! reveals that the front moves with a veloci
that depends ong,

c~g!5H Gn~g!, g<gmin

Gn~gmin!, g.gmin ,
~11!

where

Gn~g!5
1

ng
lnH (

j 52n

n

^M j
g/b&J ~12!

andgmin is theg value whereGn takes its minimum

dGn~g!

dg U
gmin

50. ~13!

The value ofg is implicitly determined by the initial condi-
tion: By expandingH0(x) for large x, one realizes that
g5b. Therefore, ifb,gmin , the free energy coincides with
the annealed average of the weightsM j , while differentg
averages are selected at lower temperatures. This implie
existence of a thermodynamic transition occurring
bc5gmin .

The analogy between the evolution equation~2! in tangent
space and the recursive relation~4! for the partition function
suggests that the whole procedure can be extended to
computation of the MLE. In this context, the timet plays the
role of the polymer lengthL andmi

t can be considered as
quenched noise in a two-dimensional~2D! environment. The
growth rate ofZ ~i.e., the free energy! finally becomes the
Lyapunov exponent.

The differences with respect to the previous cases are
presence of the anisotropy factors« and 122« and the ab-
sence of a temperature. The first one is, in principle, onl
technical variation, which leads, however, to a strong ‘‘d
generacy’’ as we will show in the following. The temper
ture instead can be removed by settingb51; the role of the
relevant control parameter will be played by the coupli
strength« parameter. With the above simple indications, w
find that then-tree approximationLn of the Lyapunov ex-
ponent is

d
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5000 56F. CECCONI AND A. POLITI
Ln5H Gn~gmin!, gmin,1

Gn~g51!, gmin>1.
~14!

The functionGn(g) has the form

Gn~g!5
1

ng
lnH(

j
K S (

wj

~122«!k~wj !«n2k~wj !

3)
i

mi~wj ! D gL J , ~15!

where we recall that thewj ’s are the directed walks on th
lattice arriving at sitej after n steps~the depth of the tree!,
k(wj ) is the number of steps not involving a change of p
sition, andmi(wj ) is the multiplier in thei th time step of the
pathwj .

Equation~14! suggests the possible existence of a ph
transition upon changing«: If gmin>1, the Lyapunov expo-
nent is given by the annealed average of the multipliers.
main difficulty in the implementation of this approach is t
computation ofGn and its minimization. In the limitn→`,
the approximation becomes exact: An interesting ques
concerns the convergence to the asymptotic value. Unfo
nately, asn increases, the expression ofGn quickly becomes
so complicated that it is practically impossible to handle
analytical expression. For this reason, in the next section
shall address the question from the numerical point of vie

III. NUMERICAL RESULTS

It is true that not only the analytical expression of t
MLE becomes very complicated asn increases, but also a
‘‘exact’’ numerical implementation is not an easy task. I
deed, the average of disorder implies the computation of s
eral multiple integrals and, even in the simple case of a u
form distribution of multipliers, the presence of a powerg in
Eq. ~15! makes the integrals immediately undoable. The o
case we have found where it is possible to combine an e
solution of the integrals with a powerful numerical analy
is that of a dichotomic distribution. Indeed, a generic m
tiple integral overK variables becomes a sum over all 2K

combinations of the variables, each properly weighted
cording to the probability of the two possible values of t
multiplier. From Fig. 1, one can see that the numberK of
integrals to be performed is already equal to 7 forn53 and
j 521, which in turn requires summing up 128 differe
terms. As a result, even in this simple case, it is not poss
to go beyondn55.

Since a global rescaling of the multipliers yields a triv
shift of the MLE, we can assume, without loss of general
that mi(t)5$1,b%. Moreover, for the sake of simplicity an
in order to maximize the effect of the fluctuations~which are
responsible for the deviation of the MLE from the singl
map case! we have assumed that 1 andb have the same
probability 1/2.

The results forn51, . . . ,5,b53, and small« values are
reported in Fig. 2, where a slow convergence towards
asymptotic value~numerically determined by iterating
chain of 1000 maps! can be observed. In the inset of th
same figure, one can also notice that the critical« value,
above which the Lyapunov exponent corresponds to the
-
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nealed average, steadily increases, in agreement with the
merical results that do not give any evidence for the ex
tence of the high-temperature phase.

Although an exact implementation of then-tree scheme is
unfeasible already forn.5, one can consider it as a numer
cal algorithm. Indeed, one can imagine to iteraten times a
perturbation initially localized in the origin. The amplitude
the site j represents an instance ofM j and the average re
quired in Eq.~15! can be computed by summing over ind
pendent realizations of the stochastic process.

Moreover, one can notice thatg plays a similar role toq
in the standard multifractal analysis; the only difference
that here, in addition to a localg average, a linear averag
over different sites is also required. It is therefore importa
to understand howgmin behaves for increasingn, i.e., to
clarify whether the actual value of the MLE does arise fro
a specificg value.

The only drawback of the numerical implementation
the need of a sufficient statistics, a constraint that beco
increasingly important for larger-n values since an accurat
determination ofM j

g strongly depends on unprobable larg
deviations as usual in a multifractal analysis. Notwithstan
ing this limitation, it has been possible to arrive atn550,
much beyond the limits for an exact implementation.

The results for«50.01 ~reported in Fig. 3! confirm that
the approximate values of the MLE approach from above
asymptotic valueL` ~denoted by the horizontal line in th
figure!. A numerical investigation of the behavior o
Ln2L` versusn suggests that the convergence is presu
ably slower than algebraic. The slow variation ofLn with n
is confirmed by the poor improvement obtained by introdu
ing the refined estimates

L̃n5
nLn2~n25!Ln25

5
~16!

~see the squares in Fig. 3!, where the choice of 5 is simply
dictated by the spacing of the numerical results. Notice t

FIG. 2. n-tree approximations of the MLE forn51, . . . ,5~from
top to bottom! compared with the numerical results~dashed curve!.
These and all the other results in the paper have been obtained
dichotomic distribution of the local multipliers (m5$1,3%, with
equal probabilities!. An enlargement of the region around the su
posed phase transition is shown in the inset.
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56 5001n-TREE APPROXIMATION FOR THE LARGEST . . .
this procedure is very effective when the main finite-s
effect arises from some rapidly decaying initial deviation,
it is the case of the Lyapunov exponent computed with
standard orthonormalization procedure@4#.

In addition to allowing the computation of the MLE, th
n-tree approximation yields an estimate of the optimalgmin
value. By comparing the results for the various depths,
finds thatgmin slowly decreases. We conjecture thatgmin
eventually converges to 0. The conclusion is suggested
the analogy between Eq.~15! and the behavior of the maxi
mal comoving Lyapunov exponentlc(v) @5#, which is de-
fined as the growth rate in the sitei 5vt of a perturbation
initially localized in the origin. In a system with left-righ
symmetry,lc(v) reaches its maximal value forv50, where
it coincides with the MLE. Therefore, forn large enough, the
dominant contribution toGn(g) is given by the growth rates
around the origin, i.e., by their logarithmic average. Acco
ingly, we expect thatgmin will eventually approach 0.

Such a tendency is confirmed for all« values that we have
considered, even well inside the supposed high-tempera
phase whereLn5Gn(1). Onesuch example is illustrated in
Fig. 4, where we reportGn(g) for «50.05 and different
depthsn. Notice that allGn(g) curves take the same valu
for g51; this is a consequence of the very definition
Gn(g): Independently ofn, Gn(1) coincides with the an-
nealed average. For relatively small values ofn, the mini-
mum of Gn is attained forgmin.1 and the correct estimat
of the Lyapunov exponent is given by the annealed avera
However, upon increasingn, gmin steadily decreases unt
gmin,1 ~in the case illustrated in Fig. 4, this happens
20,n,30). The conjectured convergence ofgmin to zero
implies the eventual disappearance of the phase transitio

Additional light can be shed on then-tree approximation
scheme shed by comparing it with a similar, though entir
heuristic, approach. The structure ofGn(g) requires iterating
an initially localized perturbation: It is therefore quite natu
to consider a different initial condition, uniformly sprea
over 2n sites, and to iterate it forn steps by assuming per

FIG. 3. Results of then-tree approximation for«50.01~bullets!
and refined estimates as from Eq.~16! ~squares!. Triangles and
diamonds refer to the results of the ‘‘naive’’ approximation d
scribed at the end of Sec. III and to the corresponding refineme
respectively. The horizontal line represents the MLE as determ
with the standard numerical procedure.
s
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odic boundary conditions. At variance with the scheme u
derstood in Eq.~15!, all sites are now statistically equivalen
so that we can estimate the MLE directly from their grow
rate ~or, better, from the average growth rate, to reduce s
tistical fluctuations!. The performance of this empirical ap
proach can be judged from the results reported in Fig
where one can see that the convergence is now from be
Moreover, while the direct estimates are worse than the c
responding values obtained from then-tree scheme, the op
posite is true for the improved estimates. We can interp
this result as an indication that the actual value of the M
in an extended system follows from a delicate balance
several processes. A more effective reduction of finite-s
effects can be presumably accomplished by introducin
still different definition of finite-time finite-space Lyapuno
exponent. Whether such a definition that applies to gen
models exists is not obvious at all.

IV. COUPLING SENSITIVITY

One case that is worth investigating with the aid of t
n-tree approximation is the small-coupling limit. In particu
lar, it is interesting to study the scaling behavior of the ML
for decreasing«. This problem already has been consider
in Ref. @1#, with the help of a mean-field approach. Here w
discuss the improvements arising from the implementation
the n-tree scheme.

In this section,« will be always so small that even in th
lowest approximation (n51) gmin,1 and the MLE is given
by the low-temperature expression. In the one-tree appr
mation, the Lyapunov exponent is given byL(«)
5G1„gmin(«)…, whereG1 follows from Eq.~15! with n51,

G1~g!5
1

g
ln^mg&1

1

g
ln$~122«!g12«g%. ~17!

For small«, the above expression simplifies to

G1~g!>
1

g
ln^mg&1

1

g
ln~112«g!. ~18!

ts,
d

FIG. 4. Gn vs g for n520 ~dashed line!, n530 ~dot-dashed
line!, andn540 ~full line! obtained from the numerical implemen
tation of then-tree approximation with«50.05.
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5002 56F. CECCONI AND A. POLITI
Since for«→0 one must recover the value of the uncoup
case,gmin(«) must go to zero in such a way that als
«gmin(«)→0. Accordingly, one can further expand Eq.~17!,
obtaining

G1~g!>^ lnm&1
G2

2
g12

«g

g
, ~19!

whereG25^(lnm)2&2^lnm&2 is the variance of the local ex
pansion rate. With some algebra, it is possible to show
the value ofgmin minimizing G1 is given by

gmin~«!52
lns

s
, ~20!

wheres[u ln«u diverges for«→0. On the one hand, formul
~20! confirms the correctness of the ansatzgmin(«)→0 and
that«g51/s can be really considered a small parameter.
the other hand, we notice that the convergence to zer
extremely slow.

By substituting Eq.~20! into the expression forG1 and
retaining only the leading terms in«, we obtain

L1~s!5L01G2

lns

s
1

1

s lns
, ~21!

where L05^ lnm& is the Lyapunov exponent of the un
coupled problem, the second term is responsible for the le
ing correction, and the third smaller contribution is report
for the sake of completeness.

The above result, already derived in@1#, has been recalled
here because it allows introducing all the key steps that
necessary to deal with higher-order approximations. In
following we illustrate the casen52 with some detail and
mention the further adjustments expected for larger depth
the tree. The complete expression forGn(g) is already rather
complicated forn52,

G2~g!5
1

2g
ln$ f 1~g!%1

1

2g
ln$2«2g f 1~g!

12«g~122«!g f 2~g!1 f 3~g!%, ~22!

where

f 1~g!5^mg&,

f 2~g!5^~m11m2!g&,

f 3~g!5^~«2m11~122«!2m21«2m3!g&,

while m,m1 ,m2 ,m3 represent the multipliers to be average
With the aid of the same approximations made forn51,

the above expression simplifies to

G2~g!>^ lnm&1
G2

2
g1

«g

g
, ~23!

which in turn gives the expression for the Lyapunov exp
nent

L2~s!5L01G2

lns

s
1

1

2

1

s lns
. ~24!
at

n
is

d-
d

re
e

of

.

-

By comparing Eqs.~24! and~21!, one can see that they diffe
only in the last term of the right-hand side, which is smal
by a factor 2 in the two-tree approximation. The same is t
~apart from the coefficient of the third term! for larger values
of n. Accordingly, this analysis seems to indicate that t
MLE grows as lnuln«u/ln«, independently of the depthn.
These conclusions are indeed confirmed by the numer
implementation of then-tree scheme for several depths. Th
can be noticed in Fig. 5, where the behavior of

Sn[~Ln2L0!u ln«u ~25!

versus ln« is reported. The slow growth ofSn is consistent
with the expected lnuln«u behavior. However, direct numeri
cal simulations~full dots in Fig. 5! suggest that the MLE
grows as 1/ln«, with no doubly logarithmic correction. In ou
opinion, the apparent contradiction can be solved by notic
that the determination of the correct scaling behavior
quires, in principle, one to take first the limitn→` ~to esti-
mate correctly the MLE! and then the limit«→0. In the
above analysis, we have instead exchanged the two lim
Since the determination ofGn(g) requires estimating an ex
ponentially growing~with n) number of contributions, it is
reasonable to conjecture that increasingly small-« values
must be reached before the leading term really overtakes
others. It is therefore conceivable that, before this asympt
regime sets in, a different scaling region appears that
comes wider and wider for increasingn. The several limits
involved in this process~we must not forget the role ofg)
make a rigorous confirmation of this conjecture a rather d
cate matter. Here we limit ourselves to recall that in tw
coupled 1D and 2D maps a purely 1/ln« behavior has been
proved to arise@6#. However, we cannot exclude that in th
present case the scaling« region is so small that it is has no
been reached by our numerical simulations; it will be po
sible to give a definite answer only by developing a mo
effective perturbative technique.

Finally, let us notice that the naive approach outlined
Sec. III falls short of identifying the leading 1/u ln«u depen-

FIG. 5. Sn @see Eq.~25!# vs « for different values ofn. The
solid lines correspond ton51, . . . ,5~from top to bottom!. Squares
denote the results of then540 approximation, while bullets corre
spond to the outcome of direct numerical simulations.
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56 5003n-TREE APPROXIMATION FOR THE LARGEST . . .
dence, predicting only linear corrections in«. We suspect
that this failure is due to the lack of an infinite time limit i
the corresponding definition of the Lyapunov exponent.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have implemented then-tree approxima-
tion for the computation of the MLE. The results have r
vealed a slow convergence towards the asymptotic value.
believe that more than being an intrinsic limitation of t
method, this is an indication of the complexity of the pro
lem. This feeling is indeed confirmed by the analogy with t
Kardar-Parisi-Zhang~KPZ! equation. As already shown i
@7#, the logarithmh5 lnj of the perturbation approximatel
satisfies the KPZ equation

ht5«hxx1«~hx!
21h~ t !, ~26!

where the subscripts denote derivatives with respect to e
time (t) or space (x) variables~assumed now to be continu
ous! andh(t) is a noiselike term corresponding to the log
rithm of the local multiplier. Accordingly, the average valu
of h is nothing but the single-map Lyapunov expone
while the MLE of the lattice is obtained by adding the ave
age of the nonlinear term. Such a correction can be ea
-
g.
-
e

-
e

er

,
-
ily

estimated by recalling that in one dimension, the probabi
distribution of h is exactly the same as for the linea
Edwards-Wilkinson model, obtained by neglecting the no
linearity @8#. The latter is the distribution of the standa
Brownian motion, i.e., the product of independent Gaussi
for the spatial derivativeshx @8#. Since the variance of eac
Gaussian is inversely proportional to the coefficient of t
Laplacian, it is seen that«^hx

2& is independent of«. There-
fore, the KPZ equation provides for any coupling streng
the same annealed average value, i.e., it even fails to find
low-temperature phase. This result indicates that one mus
beyond the KPZ approximation of the tangent dynam
~adding higher-order derivatives and further nonlinear term!
if the « dependence of the MLE is to be recovered.

The identification of effective schemes to fasten the c
vergence of finite-size estimates of the MLE remains an o
problem. Possible routes to be explored in the future
represented by corrections to the KPZ equation or by suita
modifications of then-tree approximation.
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